середу, 16 липня 2014 р.

Преломление звездного света атмосферами экзопланет

Ученые исследуют два случая преломления света экзопланетами во время их транзита мимо родительских звезд.

Когда планета проходит транзитом перед своей родительской звездой, часть света звезды проходит через атмосферу планеты и производит спектр передачи, который несет детальную информацию об атмосфере планеты. Этот метод использовался учеными для того, чтобы характеризовать атмосферы экзопланет в пределах планет от горячего Юпитера до Суперземли.

Новый телескоп Джеймса Уэбба, который готовится к запуску в 2018 году, должен значительно увеличить шансы ученых на использование метода спектроскопии при изучении атмосфер более маленьких экзопланет, чем Суперземля.

Свет преломляется и изгибается, когда он проходит через атмосферу планеты из-за градиента индекса преломления. Это вызвано тем, что индекс преломления зависит от высоты. В утонченной верхней атмосфере планеты индекс преломления ниже по сравнению с плотной более низкой атмосферой.

Во время событий, связанных с транзитом планеты перед ее звездой-хозяином, главный эффект преломления состоит в том, что часть света при прохождении звезды через атмосферу планеты может быть преломлена к отдаленному наблюдателю до транзита и преломлена далеко от отдаленного наблюдателя во время транзита.

Принимая во внимание эффект преломления, исследователь Амит Мисра (Amit Misra) и его коллеги смоделировали в этом году спектр передачи Земного аналога (т.е. планеты, которая идентична Земле во всех отношениях) до и во время транзита перед родительской звездой. Эти два случая были выдвинуты на первый план в исследовании. В первом случае, земной аналог вращается вокруг подобной Солнцу звезды и земной аналог, вращающегося вокруг звезды M5V, то есть красного карлика.

Из-за преломления есть максимальный уровень давления тангенса, который может быть исследован со спектроскопией передачи во время случая транзита. В исследовании максимальное давление тангенса определено как уровень давления в атмосфере планеты, в которой переданы 50 процентов звездного потока.

Результаты эксперимента показывают, что для земного аналога, вращающегося вокруг звезды M5V, спектроскопия передачи во время транзита может исследовать атмосферу планеты с давлениям до ~0.9 баров. Это давление - максимальный уровень давления тангенса, и это соответствует высоте примерно 1 км, указывая, что почти вся атмосфера может быть исследована.

Для земного аналога, вращающегося вокруг подобной Солнцу звезде, максимальный уровень давления тангенса во время транзита - ~0.3 бара, что соответствует высоте примерно 14 км. Это означает, что спектроскопия передачи неэффективна в исследовании более низких слоев атмосферы планеты.

Различные газы в атмосфере производят различные спектральные особенности, которые могут быть идентифицированы в спектре передачи атмосферы планеты во время транзита. Эффект преломления уменьшает сигнал к шумовому отношению (SNR) этих спектральных особенностей. Для земного аналога, вращающегося вокруг звезды M5V, уменьшение в SNR составляет ~10 процентов для всех спектральных особенностей и ~15 процентов для особенностей H2O.

Для земного аналога, вращающегося вокруг подобной Солнцу звезды, уменьшение в SNR намного больше, ~60 процентов для всех спектральных особенностей и ~75 процентов для особенностей H2O.

По мере прогрессирования транзита, преломление производит временные изменения в спектре передачи атмосферы планеты. Различия в спектрах передачи между каждой стадией прогрессии транзита могут показать зависимое от высоты изобилие газов, таким образом позволяя вертикальное профилирование атмосферы планеты. На Земле изобилие газов, таких как кислород и углекислый газ однородно всюду по атмосфере. Однако у газов, таких как H2O, озон и метан есть зависимое от высоты изобилие. Например, H2O в изобилии в более низких высотах, но становится утонченным на высотах выше ~10 км.

Для земного аналога, вращающегося вокруг подобной Солнцу звезды, возможно, до входа в транзит, исследовать нижнюю атмосферу планеты. Это вызвано тем, что у более плотной более низкой атмосферы планеты есть больший индекс преломления, что позволяет свету быть отклоненным в целом на достаточный угол и быть видимым для отдаленного наблюдателя даже при том, что планета все еще на некотором расстоянии от того, чтобы начать свой транзит перед родительской звездой.

Однако переданный звездный поток до входа в транзит очень маленький, так как большая часть атмосферы планеты непрозрачна. Во время самого транзита, особенно во время середины транзита, те же самые большие углы отклонения, соответствующие более плотной более низкой атмосфере планеты, отклоняют звездный поток и делают его практически невидимым для отдаленного наблюдателя. Это определяет максимальное давление тангенса и препятствует тому, чтобы более плотная более низкая атмосфера была исследована спектроскопией передачи во время самого транзита.

Ожидается, что телескоп Джеймса Уэбба (JWST) будет в состоянии обнаружить спектр передачи земного аналога, вращающегося вокруг звезды M5V. Тем не менее, спектр передачи земного аналога, вращающегося вокруг подобной Солнцу звезды, был бы вне возможностей обнаружения телескопа JWST. Вертикальное профилирование атмосферы земного аналога, наблюдая временные изменения в спектрах передачи ее атмосферы также вне возможностей JWST независимо от того, является ли звезда вблизи изучаемой экзопланеты подобной Солнцу звездой или звездой как красный карлик M5V.

Немає коментарів:

Дописати коментар

Примітка: лише член цього блогу може опублікувати коментар.